
mesas.py v1.0: A flexible Python package for modeling solute
transport and transit times using StorAge Selection functions
Ciaran J. Harman1,2 and Esther Xu Fei1

1Department of Environmental Health and Engineering, Johns Hopkins University Baltimore, MD, USA
2Department of Earth and Planetary Sciences, Johns Hopkins University Baltimore, MD, USA

Correspondence: Ciaran J. Harman (charman1@jhu.edu)

Abstract. StorAge Selection transport theory has recently emerged as a framework for representing material transport through

a control volume. It can be seen as a generalization of transit time theories and lumped parameter models to allow for arbitrary

time-variability of the rate of material flow in and out of the control volume, and in the transport dynamics. SAS is currently

the state-of-the-art approach to interpreting tracer transport. Here we present mesas.py , a Python package implementing the

SAS framework. mesas.py allows SAS functions to be specified using several built-in common distributions, as a piecewise-5

linear CDF, or as a weighted sum of any number of such distributions. The distribution parameters and weights used to combine

them can be allowed to vary in time, allowing SAS functions of arbitrary complexity to be specified. mesas.py simulates

tracer transport using a novel mass tracking scheme and can account for first order reactions and fractionation. We present a

number of analytical solutions to the governing equations and use these to validate the code. For a benchmark problem the

timestep-averaging approach of the mesas.py implementation provides a 15x reduction in mass balance errors compared to10

a previous implementation of SAS.

1 Introduction

StorAge Selection (SAS) is a theoretical framework for modeling transport dynamics through spatially integrated systems

(control volumes). It is applicable in any system where it is reasonable to assume that the bulk material flowing out of a

system (at rate Q(t)) at some time t is some conservative mixture of the bulk material that flowed in at earlier times (at rate15

J(t)). For example, it is often reasonable to assume that the streamflow and evapotranspiration leaving a watershed are some

conservative mixture of precipitation that fell on that watershed at earlier times. The conservative bulk material in that case is

simply the water comprising the rainfall, streamflow, and evapotranspiration. The development of this theory and related issues

in watershed hydrology have been recently reviewed in Benettin et al. (2022).

SAS is a generalization of the idea of a transit time distribution (TTD), which have proved useful in a wide range of disci-20

plines including chemical engineering (Ross et al., 2006), transportation engineering (Tyworth and Zeng, 1998), groundwater

hydrology (Dupas et al., 2020; Rinaldo et al., 2015; Danesh-Yazdi et al., 2018), surface water hydrology (Stockinger et al.,

2016; Rodriguez and Klaus, 2019; Rodriguez et al., 2021), medicine (Rossum et al., 1989), and others. However TTD have pre-

viously required that the bulk material flow through the system be approximately steady (i.e. J(t) =Q(t) = a constant). SAS

1

https://doi.org/10.5194/egusphere-2022-1262
Preprint. Discussion started: 12 December 2022
c© Author(s) 2022. CC BY 4.0 License.

relaxes this assumption in a rigorous and general way, so that it can (in principle) be used to characterize transport through any25

system where the bulk material flow is conserved. However to date SAS functions have not been widely adopted in practice.

In part this is due to the perception that they are too complex and data-hungry.

Our objective here is to provide detailed documentation of mesas.py , a Python implementation of SAS functions that

is easy to use, highly flexible, sophisticated, and computationally accurate. This implementation is already the basis of online

teaching resources (Harman, 2020), and we hope to develop more in the future. It is essential therefore that there exist a30

peer-reviewed publication supporting and documenting the software.

In a typical forward-modeling use-case, we wish to predict the concentration CQ(t) of a conservative tracer in the bulk

material outflow Q(t), which is assumed to be a conservative mixture of previous bulk material inflows J(t) in which the

tracer concentration was CJ(t). If so, the outflow concentration CQ(t) will be some weighted average of past values of CJ(t).

The transit time distribution pQ(T,t) gives those weights:35

CQ(t) =

∞∫

0

CJ(t−T)pQ(T,t)dT (1)

SAS provides a means to calculate the time varying distribution pQ(T,t) for a given system. An overview of SAS and related

approaches can be found in Botter (2012); Harman (2015); Rinaldo et al. (2015); Benettin and Bertuzzo (2018).

The basic equations required to calculate pQ(T,t) (discussed in Section 2 below) are not especially difficult to solve nu-

merically, but some care is required. An implmentation of SAS in MATLAB (tran-SAS) is already available for MATLAB40

(Benettin and Bertuzzo, 2018). mesas.py replicates the functionality of tran-SAS, but offers the following features:

– mesas.py offers an extremely flexible framework for specifying SAS functions, allowing them to be arbitrarily com-

plex and time-varying. This includes the ability to specify SAS functions as a time-varying weighted sum of other

functions (Rodriguez and Klaus, 2019) and as a (time-varying) piecewise-linear CDF with any number of segments

– mesas.py uses a novel mass-tracking approach that estimates solute/tracer storage and outflow rates as part of the45

solution, not through a subsequent convolution integral

– mesas.py estimates the timestep-averaged transit times and mass fluxes using a Runge-Kutta 4th order method, and

provides superior numerical accuracy and mass balance accounting (as we shall demonstrate)

– mesas.py allows for time-varying first-order reactions and time-varying solute/tracer fractionation

– mesas.py is implemented in Python and Fortran and is designed to be easy to install (through conda-forge) and50

user-friendly

The governing equations of the SAS framework are given in Section 2 of this paper, including the novel approach to so-

lute/tracer mass tracking. Calculating the storage and release of solutes/tracers continuously in tandem with calculation of the

TTD (rather than using the convolution after the TTD has been obtained) makes incorporating reactions and fractionation into

2

https://doi.org/10.5194/egusphere-2022-1262
Preprint. Discussion started: 12 December 2022
c© Author(s) 2022. CC BY 4.0 License.

SAS function simple and intuitive. Section 3 gives details of the code, including the numerical implementation, the method for55

specifying SAS functions, and precedures for running the code.

In Section 4 of the paper we test the code against a number of benchmarks in the form of analytical solutions to the gov-

erning equations. These include cases of steady and unsteady flow. We compare the accuracy of mesas.py against that of

tran-SAS for the unsteady flow case.

2 Governing equations60

To estimate pQ and solve equation (1) two key pieces of information are required: 1) timeseries of inflows J(t) and outflows

Qq(t) (there may be more than one outflow, hence the subscript index q), and 2) SAS functions Ωq (one for each outflow q)

that capture the way each outflow is drawn from the water of different ages available to be removed from storage. The inflow

and outflow data are used to solve expressions of conservation of mass that describe how the age distribution of the material in

storage changes over time as material is added and removed. The SAS functions are needed to calculate this solution because65

they characterize the relative rate that material of different relative ages is selected for removal.

2.1 Conservation Laws

2.1.1 Conservation law for the bulk material flows

The bulk flow is the material that makes up the inflows and outflows from the system, carrying tracers and other species of

material with it. Typically in hydrologic applications the bulk flow is water. As is typical in hydrology we assume the water is70

incompressible so we can refer to units of volume for convenience, but the framework is valid for any conservative bulk flow

as long as fluxes, storages and concentrations are expressed in consistent compatible units.

The conservation equation for the bulk flow can be obtained by considering an incremental volume sT (T,t) that has an age

T at time t. It therefore entered at time ti = t−T . Note that sT (T,t) has units of volume (or mass) per time, as it is the amount

that entered in an infinitesimal increment of time. If the inflow rate is J(t) at some time in the past t= ti, then sT (0, t) = J(t).75

Over time, the quantity of bulk flow residing in storage represented by sT depletes due to outflows. Assuming that outflows

are indexed by q, and each has a outflow rate Qq and transit time distribution pq(T,t), then the time evolution of sT from some

initial time ti to the present time t is given by:

d

dt
sT (t− ti, t) = J(t)δ(t− ti)−

∑

q

Qq(t)pq(t− ti, t) (2)

where δ(·) is the Dirac delta distribution. Typically the derivative on the left here is broken up into two terms, like so:80

d

dt
sT (t− ti, t) =

∂sT
∂t

+
∂sT
∂T

(3)

3

https://doi.org/10.5194/egusphere-2022-1262
Preprint. Discussion started: 12 December 2022
c© Author(s) 2022. CC BY 4.0 License.

However the form given in (2) serves to remind us that these two derivatives can be thought of as representing the rate that

sT changes as it simultaneously moves through time and ages. We can think of it moving along a characteristic curve that is a

straight line in age-time space, with a slope of 1 unit of age per unit of time and passing through the point (T,t) = (0, ti). The

computational method of mesas.py is based on numerically integrating along this characteristic curve.85

Integrating sT over all ages up to some age T gives the cumulative form ST , known as the age-ranked storage:

ST (T,t) =

T∫

0

sT (τ, t) dτ (4)

This is the volume of bulk material residing in storage that is younger than T at time t. The bulk material conservation

equation is often expressed in terms of this cumulative quantity and Pq(T,t), the cumulative form of pq(T,t). Equation (2) can

be obtained from the cumulative form by taking the derivative with respect to T .90

ST is also essential for solving (2) through its role in evaluating the SAS function (see Section 2.2 below). Therefore even

though the primary state variable mesas.py solves for is sT (T,t), the code must also keep track of the accumulating values

of ST (T,t).

2.1.2 Conservation law for solutes

Consider a conservative solute or tracer that travels ideally with the bulk material. We can define mT (T,t) as the incremen-95

tal tracer mass that entered at time ti and is now remaining in storage (mT). We can also define a notion of ‘age-ranked

concentration’ in storage as the increment of age-ranked solute mass per increment of age-ranked storage:

CT (T,t) =
mT (T,t)
sT (T,t)

(5)

Note that this is not a concentration in the usual sense. It may not correspond to an actual measurable concentration anywhere

in the system if material of different ages have intermingled sufficiently. However it does (by definition) equal the input100

concentration CJ(t) just as water enters the system, thus:

mT (0, t) = CT (0, t)sT (0, t) = CJ(t)J(t) (6)

It also gives the effective concentration of the solute in the increment of water at age T = t− ti that is contributing to each

outflow, and thus controls the mass flux out for a given age increment, which we will term ṁq:

ṁq(T,t) =Qq(t)CT (T,t)pq(T,t) (7)105

4

https://doi.org/10.5194/egusphere-2022-1262
Preprint. Discussion started: 12 December 2022
c© Author(s) 2022. CC BY 4.0 License.

Putting these together, we can write a conservation law for the solute as:

d

dt
mT (t− ti, t) = J(t)CJ(t)δ(t− ti)−

∑

q

ṁq(t− ti, t) (8)

This equation is analogous to (2), but instead of tracking the bulk material along a characteristic curve in time-age space, it

tracks the mass of solute/tracer.

2.1.3 Accounting for fractionation and reactions110

We can easily generalize (8) in two ways.

First, we can account for the effect of fractionation in the outflows. Sometimes the concentration of a solute in an outflow

is different from its concentration in storage. For example, chloride (which has been used as a tracer in catchment studies

(Harman, 2015)) can leave in discharge, but cannot leave with evapotranspiration. Thus the effective concentration of chloride

in the evaporative flux must be zero. A less extreme example is where stable water isotope ratios in evaporation tend to be115

lighter than those in the water left behind.

We can account for this fractionation in a simple way by assuming the concentration of the solute in outflow q is some

(possibly time-varying) multiple αq(t) of the concentration in storage. To accomplish this we modify equation (7) to include

this:

ṁq(T,t) = αq(t)Qq(t)CT (T,t)pq(T,t) (9)120

When αq = 1 there is no fractionation. αq < 1 will result in reduced concentrations in the given outflow, and αq = 0 excludes

the solute from the outflow. It is also possible to set αq > 1 if the solute is preferentially entrained in the outflow.

Second, we can account for first order reactions. The change in CT resulting from mass introduced or removed by such a

reaction can be modeled as:

dCT
dt

= k1(Ceq −CT) (10)125

From this we can define a reaction term ṁR as:

ṁR(T,t) = sT (T,t)
dCT
dt

= k1(t)(Ceq(t)sT (T,t)−mT (T,t)) (11)

where k1 is a first-order reaction rate, and Ceq is an equilibrium concentration (both of which may vary in time).

Including fractionation and the reaction terms in the solute conservation law gives:

d

dt
mT (t− ti, t) =J(t)CJ(t)δ(t− ti)−

∑

q

ṁq(T,t) + ṁR(T,t) (12)130

5

https://doi.org/10.5194/egusphere-2022-1262
Preprint. Discussion started: 12 December 2022
c© Author(s) 2022. CC BY 4.0 License.

where ṁq is given by (9) and ṁR is given by (11)

The actual outflow concentration at time t is obtained by integrating ṁq(T,t) over all ages T ≤ Tmax (where Tmax = t

usually, but may be less than t), plus the ‘old water’ flux:

Cq(t) =
1

Qq(t)

Tmax∫

0

ṁq(T,t)dT +Cold× (1−Pq(Tmax, t)) (13)

where Cold is the concentration assigned to all the water in storage whose age is greater than Tmax.135

2.2 StorAge Selection (SAS) functions

The equations above cannot be solved on their own, as there are fewer equations than unknowns. The SAS functions provide

the required additional relationship linking the age-ranked storage and the transit time distribution.

Given a volume of age-ranked storage ST representing all the bulk material in a control volume with an age of T or less, the

cumulative SAS function Ωq is defined as a function that gives the fraction of outflow Qq drawn from ST (T,t). This is also140

(by definition) the fraction of discharge whose with an age of T or less, which is simply Pq(T,t). Thus we can write:

Pq(T,t) = Ωq(ST , t) (14)

where ST = ST (T,t). That is, the SAS function and the cumulative transit time distribution both give the fraction of dis-

charge with age T or less, but the SAS function expresses the age in terms of age ranked storage ST (T,t), rather than age T .

This has proved to be very useful since Pq(T,t) varies in time due to variations in fluxes, Ωq(ST , t) only varies when the man-145

ner in which storage turns over varies. In many applications SAS functions have been approximated by a variety of continuous

distributions with good results (Benettin et al., 2022). We will discuss several that have been implemented in mesas.py in

the next section.

By taking the derivative of the equation above and applying the chain rule, we can see that:

pq(T,t)δT = ωq(ST , t)δST (15)150

where ωq is the density form of Ωq . The left hand side of this equation is the rate of discharge of water with ages between T

and T + δT . The right hand side is the rate water is removed from the age-ranked storage between ST and ST + δST . These

are related by:

δST = δT
∂ST
∂T

= δTsT (16)

6

https://doi.org/10.5194/egusphere-2022-1262
Preprint. Discussion started: 12 December 2022
c© Author(s) 2022. CC BY 4.0 License.

If our age step is δT the relationships above allow us to determine the transit time distribution as:155

pq(T,t) = ωq(ST , t)sT (T,t) (17)

and therefore solve the conservation law (2).

2.2.1 Continuous SAS functions available in mesas.py

The SAS function must be specified so that it accurately captures how a system turns over, releasing storage as bulk outflow.

At present, three continuous distributions commonly used for specifying SAS functions are available built-in to mesas.py :160

the Beta, Kumaraswamy, and Gamma distributions. More details on each distribution are given below.

These distributions each have at least two parameters: a location parameter Smin and a scale parameter S0. These parameters

both have units of storage, and serve to shift and scale the values of ST into a normalized form:

x=
ST −Smin

S0
(18)

with x= 0 if ST < Smin. In mesas.py the values of S0, Smin and all other parameters can be given as constant values, or165

different values for every timestep can be provided.

– Beta distribution:The CDF of the Beta distribution is given by:

Beta(ST ;Smin,S0,α,β) =
B(x;α,β)
B(α,β)

Smin ≤ ST ≤ Smin +S0 (19)

where B(x;α,β) and B(α,β) are the incomplete and complete Beta functions, and α,β > 0. This distribution has been

used to represent the SAS function of systems whose total active storage volume S(t) has been estimated (Benettin et al.,170

2022). In those cases Sm is set to zero and S0 = S(t)

– Kumaraswamy distribution: The CDF of the Kumaraswamy distribution is given by:

Kumaraswamy(ST ;Smin,S0,a,b) = 1− (1−xa)b Smin ≤ ST ≤ Smin +S0 (20)

where a,b > 0. This distribution has also been used to represent the SAS function of systems whose total active storage

volume has been estimated.175

– Gamma distribution: The Gamma distribution is given by:

Gamma(ST ;Smin,S0,α) =
Γ(α,x)
Γ(α)

for Smin ≤ ST <∞ (21)

7

https://doi.org/10.5194/egusphere-2022-1262
Preprint. Discussion started: 12 December 2022
c© Author(s) 2022. CC BY 4.0 License.

This distribution has been used to represent the SAS function of systems whose total volume is unknown, and the right

tail of the SAS function is assumed to taper exponentially for sufficiently large ST (Harman, 2015; Benettin et al., 2022).

In addition, any distribution specified by the scipy.stats library can be used in mesas.py by converting its CDF into180

a piecewise-linear form (see next section). This is done automatically within the mesas.py . The accuracy of the results

obtained this way may be poor.

2.2.2 Uniform and piecewise-linear SAS functions in mesas.py

SAS functions can also be specified as a piecewise-linear CDF with N segments. These linear segments join control points

(ST q,0,Ωq,0), (ST q,1,Ωq,1) . . .(ST q,N ,Ωq,N). To ensure the result is a probability distribution, we require 0 = Ωq,0 ≤ Ωq,1 ≤185

. . .≤ Ωq,N = 1, and 0≤ ST q,0 ≤ ST q,1 ≤ . . .≤ ST q,N . The SAS function is specified by giving these control points, which

may vary in time. The PDF ωq(ST , t) is piecewise constant:

ωq(ST , t) =

Ωq,1−Ωq,0
ST q,1−ST q,0

ST q,0 ≤ ST < ST q,1

Ωq,2−Ωq,1
ST q,2−ST q,1

ST q,1 ≤ ST < ST q,2

· · ·

Ωq,N −Ωq,N−1

ST q,N −ST q,N−1
ST q,N−1 ≤ ST < ST q,N

0 otherwise

(22)

The parameters of the N -segment piecewise SAS function are the N + 1 values of ST q,n and N − 1 values of Ωq,n (recall

that Ωq,0 = 0 and Ωq,N = 1).190

2.2.3 SAS functions built from weighted sums of components

mesas.py also allows a SAS function to be specified as a (time-varying) weighted sum of component SAS functions specified

in any of the available ways. This approach was first suggested by Rodriguez and Klaus (2019), and Wilusz et al. (2020)

provided evidence supporting its validity.

8

https://doi.org/10.5194/egusphere-2022-1262
Preprint. Discussion started: 12 December 2022
c© Author(s) 2022. CC BY 4.0 License.

Given M component SAS functions (indexed by m) defined using one of the methods presented above, the overall SAS195

function can be obtained as:

ωq(ST , t) =
M∑

m=1

fq,m(t)ωq,m(ST , t) (23)

where fq,m(t) is a (possibly time-varying) weight. These weights must be provided as inputs to the model. The weights

should sum to 1 at each timestep (though this is not enforced by mesas.py).

3 Methods200

3.1 Numerical implementation

The numerical implementation of the governing equations in mesas.py is reminiscent of a numerical finite-volume scheme.

We will assume that timesteps ∆t and agesteps ∆T are equal.

First, agestep-averaged forms of the state variables are obtained by integrating in T over an interval of past input times

[ti−∆T,ti]:205

si(t) =
1

∆T

ti∫

ti−∆T

sT (t− τ, t)dτ (24)

mi(t) =
1

∆T

ti∫

ti−∆T

mT (t− τ, t)dτ (25)

For notational consistency we define Si(t) = ST (t−ti, t). We can use these to write agestep-averaged forms of (2) and (12):

∆T
dsi
dt

= J(t)

ti∫

ti−∆T

δ(t− τ)dτ −
∑

q

Qq(t)

ti∫

ti−∆T

pq(t− τ, t)dτ (26)

∆T
dmi

dt
= J(t)CJ(t)

ti∫

ti−∆T

δ(t− τ)dτ −
∑

q

ti∫

ti−∆T

ṁq(t− τ, t)dτ

−

ti∫

ti−∆T

ṁR(t− τ, t)dτ (27)210

There are a few things to unpack here. First, note that due to the properties of the Dirac δ-function the integral
∫ ti
ti−∆T

δ(t−
τ)dτ is 1 if ti−∆T < t < ti, and is zero otherwise. Thus for all times after ti the first term disappears in both equations above.

This behavior can be represented using the indicator function 1[ti−∆T,ti)(t), which we will write as 1i(t) for shorthand.

9

https://doi.org/10.5194/egusphere-2022-1262
Preprint. Discussion started: 12 December 2022
c© Author(s) 2022. CC BY 4.0 License.

The agestep-averaged TTD pqi(t) can be expressed in terms of the cumulative TTD, and thus in terms of the SAS function

as:215

pqi(t)∆T =

ti∫

ti−∆T

pq(t− τ, t)dτ = Pq(t− ti + ∆T,t)−Pq(t− ti, t)

= Ωq(ST (t− (ti−∆T), t), t)−Ωq(ST (t− ti, t), t)

= Ωq(Si(t) + si(t), t)−Ωq(Si(t), t)

(28)

The timestep-averaged values of ṁq and ṁR can then be obtained if we are willing to approximate the age-ranked concentration

CT is constant over the interval ∆T at CT =mi/si. This amounts to approximating the concentration CJ in the corresponding

input bulk material as constant over this interval.

Thus we can express the governing equations as the set of ODEs:220

∆T
dsi
dt

= J(t)1i(t)−
∑

q

Qq(t)pqi(t)∆T (29)

= fs(si,Si, t)∆T (30)

∆T
dmi

dt
= J(t)CJ(t)1i(t)−

mi(t)
si(t)

(∑

q

αq(t)Qq(t)pqi(t)∆T

)
− k1(t)(Ceq(t)si(t)−mi(t))

= fm(mi,si,Si, t)∆T

(31)

If the right hand side of these equations were functions of the state variables si and mi and a number of time-variable

coefficients (J , Qq , CJ , αq , k1, Ceq) then these would be ODEs. The dependence of the SAS function on the cumulative value225

Si(t) complicates matters only slightly.

Numerical solution of these equations involves two core tasks:

– Estimating the rates of change fs(si,Si, t) and fm(mi,si,Si, t)

– Using these to estimate the state variables si and mi (and Si) at a future time

Let us assume t= j∆t and T = i∆T , and recall that age and time steps are equal in size. Now define sji = si(j∆t), and230

define mji similarly. Particular care must be taken to ensure that an accurate value of ST is used to evaluate the SAS function.

Let

Sji =
j∑

k=i+1

sjk∆t (32)

10

https://doi.org/10.5194/egusphere-2022-1262
Preprint. Discussion started: 12 December 2022
c© Author(s) 2022. CC BY 4.0 License.

Note that by this definition the value of Sji depends on sji+1 but not on sji. For the RK4 method the state variables must be

evaluated at an intermediate point half way between the regular time steps. The value of S
j+

1
2

i can be estimated as:235

S
j+

1
2

i =
Sji + Sj+1

i

2
(33)

But note that Sj+1
i can be found only after an estimate of sj+1

i+1 is obtained. This suggests that in order to calculate how sji

becomes sj+1
i we must first have determined both sji+1 and sj+1

i+1. In other words, for an accurate numerical solution we need

to know the fate of younger material before we can determine the fate of older material. Because of this, mesas.py solves

j→ j+ 1 for all i before moving on to i+ 1, and so on.240

mesas.py uses a Runge-Kutta 4th-order method (RK4) to estimates the value of sj+1
i as follows:

k1 = fs(s
j
i,S

j
i, j∆t)

k2 = fs(s
j
i + 1

2k1∆t,S
j+

1
2

i ,(j+ 1
2)∆t)

k3 = fs(s
j
i + 1

2k2∆t,S
j+

1
2

i ,(j+ 1
2)∆t)

k4 = fs(s
j
i + k3∆t,Sj+1

i ,(j+ 1)∆t)

k∗ =
k1 + 2k2 + 2k2 + k1

6

sj+1
i = sji + k∗∆t

(34)

Similar steps are followed to estimate mj+1
i using fm(mi,si,Si, t). During the calculation the intermediate values of pq , ṁq

and ṁR are also tracked and timestep-averaged according to the same scheme. The state variables are held in memory in arrays

whose columns are times, and whose rows are ages. Thus stepping through timesteps j for a fixed input time i corresponds245

with stepping along a diagonal of a state variable matrix.

mesas.py allows initial conditions to be specified for the age ranked storage sT and solute mass mT . This is useful for

restarting calculations or spinning up the simulation. The initial conditions are supplied as a vector of values s0k and m0k for

ages k. Each entry represents the value of sT and mT at t= 0 averaged over each age interval, and is used to populate the first

column of the matrices holding the state variables.250

mesas.py proceeds by solving all the timesteps j→ j+ 1 for the first age step before moving on to second, and so forth.

Typically, when there are N time steps the solution is found for N age steps also. This is sometimes excessive since the

contributions of bulk flow from the start of the simulation to the final timestep may be negligible. The number of age steps can

also be larger than N , though this will only have value if an initial condition with values of s0i for more than >N ages. Note

that all outflow whose age is unknown is assigned concentration Cold.255

3.2 Model specification and input structure

Inputs to mesas.py come in two main forms:

11

https://doi.org/10.5194/egusphere-2022-1262
Preprint. Discussion started: 12 December 2022
c© Author(s) 2022. CC BY 4.0 License.

– parameters specifying the SAS function(s), solute properties, and other model settings

– timeseries of inflows, outflows, and other variables

The parameters are specified using a nested data structure that can be stored and read from a JSON-formatted text file, or fed260

into a model object instance directly as a Python dictionary. The timeseries can be provided as a .csv text file, or as a Pandas

dataframe.

The parameter data structure consists of a dictionary of key:value pairs, where a ’key’ is an immutable label (typically a

string), and a ’value’ is an object that can be retrieved from the dictionary using the associated key. The values can themselves

be dictionaries, allowing for a nested structure to the data.265

The top level dictionary in the parameter specification must have a key "sas_specs". The associated value must be

a dictionary of SAS specifications. It may also have two optional entries: "solute_parameters" provides information

about solutes to be routed through the model, and "options" can be used to set a number of model options.

3.2.1 SAS function specification

A basic example of the "sas_specs" key:value pair is shown below:270

1 "sas_specs":{

2

3 "Q":{

4 "Q SAS function 1":{

5 "func": "gamma",

6 "args": {

7 "loc": 0.0,

8 "scale": "S_scale",

9 "a": 0.6856

10 }

11 },

12 "Q SAS function 2":{

13 "func": "beta",

14 "args": {

15 "loc": 0.0,

16 "scale": 150.0,

17 "a": 1.0,

18 "b": 3.0

19 }

20 }

21 },

22

23 "ET":{

24 "ET SAS function":{

25 "ST": [0.0, "S_ET"],

26 "P": [0.0, 1.0]

27 }

12

https://doi.org/10.5194/egusphere-2022-1262
Preprint. Discussion started: 12 December 2022
c© Author(s) 2022. CC BY 4.0 License.

28 }

29 },

The sas_spec dictionary should contain one key for each bulk flux out of the control volume, and each key must exactly

match the heading of a column in the timeseries dataset giving that flux rate. In the example above, mesas.py would expect

the timeseries dataset to contain columns Q and ET.

Each of the keys naming a bulk flux in sas_specs is associated with a dictionary specifying the SAS functions for that

flux. That dictionary can also include multiple SAS functions, which are combined together using time-varying weights. In275

the example above mesas.py would expect to find columns in the timeseries dataset titled "Q SAS function 1" and

"Q SAS function 2" containing weights to multiply each SAS function. These weights should add up to 1, though this

is not checked. If this dictionary contains only one key:value pair then it is not necessary to provide a weights column in the

timeseries dataset.

Presently, each SAS function can be specified in three different ways:280

– As a Gamma, Beta, or Kumaraswamy distribution

– Using any distribution from scipy.stats

– As a piecewise linear cumulative distribution function (CDF)

The Gamma, Beta, or Kumaraswamy distributions are coded into the core computational code, while scipy.stats distri-

butions will be approximated as piecewise linear CDFs. In either case the distribution is selected based on the value associated285

with "func". In the example above gamma and beta distributions are combined to produce the SAS function for outflow Q.

The distribution parameters are given by the dictionary associated with the key "args". The expected contents of this varies

between distributions (see table 1). Any parameter value can be specified as a fixed number, or can be allowed to vary in time.

Time-varying parameters are given as a string identical to a column in the timeseries dataset where the time varying values are

provided. In the example sas_specs above the scale parameter of the Gamma distribution used in Q SAS function 1290

is set to S_scale. This tells mesas.py to use the timeseries of values found in that column of the input dataset for the scale

parameter.

To use a distribution from scipy.stats the key:value pair "use":"scipy.stats" should be included. An optional

parameter "nsegments" sets the number of segments used to approximate the distribution. Note that this approach is in-

cluded for convenience, but is not recommended when the tails of the SAS distribution are important for the problem being295

considered, as they may not be well captured by the piecewise linear CDF.

Alternatively, the SAS function can be specified as a piecewise linear CDF. In the example above, this option is used to

specify a uniform SAS function for ET using a single linear segment. The cumulative age-ranked storage values "ST" and

corresponding cumulative probabilities "P" (varying from 0 to 1) must be provided as lists of increasing values. Any of the

values in these lists may be allowed to vary in time by instead providing a string corresponding to the heading of a column in300

the input timeseries dataset – see for example "S_ET" in the "ET SAS function" above.

13

https://doi.org/10.5194/egusphere-2022-1262
Preprint. Discussion started: 12 December 2022
c© Author(s) 2022. CC BY 4.0 License.

Table 1. Relationship between the parameters in equations (19), (20), (21) and the keys used to specify the value of these parameters in the

SAS function specification.

Gamma distribution (21) Beta distribution (19) Kumaraswamy distribution (20)

Smin ↔ "loc"

S0 ↔ "scale"

α ↔ "a"

Smin ↔ "loc"

S0 ↔ "scale"

α ↔ "a"

β ↔ "b"

Smin ↔ "loc"

S0 ↔ "scale"

a ↔ "a"

b ↔ "b"

3.2.2 Solute parameters

Solutes properties are given in a dictionary associated with the top-level key "solute_parameters". The keys in this dic-

tionary should correspond with columns in the timeseries dataset giving inflow concentrations. Each key should be associated

with a dictionary giving additional parameters. If defaults are to be used, the associated dictionary may be empty, and simply305

given as {}. An example is given below:

1 "solute_parameters":{

2

3 "Cl mg/l":{

4 "C_old": 7.11,

5 "alpha": {"Q": 1.0, "ET": 0.0}

6 }

7 },

In this case mesas.py will look for a timeseries of solute inflows in column "Cl mg/l" and produce predictions of

the outflow concentrations associated with this input. Two additional parameters are specified. "C_old" gives the old water

concentration Cold and "alpha" corresponds to the αq partitioning parameter in (9). In the given example no chloride can

leave the system through ET, as the corresponding value of α is zero. See Table 2 for more information.310

3.2.3 Options

Additional options can also be set in the "options" dictionary of the parameter inputs. The available options are described

in Table 3.

3.2.4 Timeseries

The timeseries input can be provided as a .csv file, or as a Python Pandas dataframe. The order of the columns is not impor-315

tant but the column names should be consistent with references to timeseries data in the SAS function specification, solute

parameters, and options.

14

https://doi.org/10.5194/egusphere-2022-1262
Preprint. Discussion started: 12 December 2022
c© Author(s) 2022. CC BY 4.0 License.

Table 2. Description of the keys that may optionally be in the dictionary associated with each solute in the "solute_parameters"

parameter input dictionary.

Key Symbol(s) Description

"C_old" Cold Old water concentration. This will be the concentration of all water released of unknown age. If

sT_init is not specified, this will be all water in storage at t= 0. If sT_init is specified, it

will be all water older than the last non-zero entry in sT_init. Default is 0.0. Cannot be set as

time-varying.

"k1" k1 First-order reaction rate constant in equation (11). Default is 0.0. May be time-varying if a time-

series column name is provided.

"C_eq" Ceq Equilibrium concentration in equation (11). Default is 0.0. May be time-varying if a timeseries

column name is provided.

"alpha" αq A dictionary giving partitioning coefficients for each outflow as in (9) . Default is 1.0. Dictionary

keys must correspond to named outflow columns in the SAS specification. Each αq may be time-

varying if a timeseries column name is provided.

"sT_init" sT (T,0) List or array of values specifying the initial age-ranked storage distribution in the system. This is

useful if the system is initialized by some sort of spin-up. Each entry is age-ranked storage in an

age interval of duration ∆t.

"mT_init" mT (T,0) List or array of values specifying the initial age-ranked mass in the system. This is useful if the

system is initialized by some sort of spin-up. Each entry is age-ranked mass in an age interval of

duration ∆t. If mT_init is specified, sT_initmust also be specified in the options, and be of

the same length. The element-wise ratio mT_init/sT_init gives the age-ranked concentration

CT of the water in storage at time zero. Note that if sT_init is specified but mT_init is not,

the concentrations associated with each non-zero value of sT_init will be zero. Default is None.

Cannot be set as time-varying.

15

https://doi.org/10.5194/egusphere-2022-1262
Preprint. Discussion started: 12 December 2022
c© Author(s) 2022. CC BY 4.0 License.

Table 3. Description of the keys that may optionally be in the dictionary associated with each solute in the "solute_parameters"

parameter input dictionary.

.

Key Description

"influx" String, default is "J". Gives the name of the column in the timeseries dataset containing the inflow rate.

"dt" Timestep ∆t, such that ∆t multiplied by any of the fluxes in the timeseries dataset gives the total volume of

flux over the timestep. Default is 1.0. Cannot be set as time-varying.

"n_substeps" Integer, default is 1. Number of substeps used in each timestep of the calculation. Subdividing the timesteps

can increase the numerical accuracy of the solution and address some numerical issues, at the cost of longer

run times. Note that the substep calculations are not retained in the output – only aggregate timestep results

are provided.

"max_age" Integer, default is the length of the timeseries dataset. The maximum number of age steps that will be cal-

culated. This controls the number of rows in the output matricies. Set to a smaller value than the default to

reduce calculation time (at the cost of replacing calculated concentrations of older water with the value of

"C_old")

"sT_init" List or array, default is zero array of the length of the timeseries dataset. Initial distribution of age-ranked

storage (in density form). Useful for starting a run using output from another model run, e.g. for spin up. If

the length of this array is less than the length of the timeseries dataset, then "max_age" will be set to the

length of "sT_init".

"verbose" Boolean, default is false. Print information about the calculation progress.

"warning" Boolean, default is true. Print warnings about calculation issues.

"debug" Boolean, default is false. Print a very large amount of information about the calculation progress. Do not

use.

16

https://doi.org/10.5194/egusphere-2022-1262
Preprint. Discussion started: 12 December 2022
c© Author(s) 2022. CC BY 4.0 License.

For example, to be consistent with the specifications given in the example in Sections 3.2.1 and 3.2.2, the input dataframe

would have the following columns:

– "Q" and "ET": outflow rates (e.g. discharge and evapotranspiration) at each timestep. These are assumed to be average320

rates over the timestep (rather than instantaneous rates at the start or end)

– "J": Average inflow rate over each timestep

– "Cl mg/l": Inflow concentration at each timestep

– "Q SAS function 1", "Q SAS function 2": weights associated with the two component SAS functions that

will be combined to give the SAS function for "Q". Note that a column for "ET SAS function" is not required325

since there is only one component

– "S_ET" and "S_scale": time varying parameters of the SAS functions

After running, the output timeseries would include the following new columns:

– "Cl mg/l -> Q"

– "Cl mg/l -> ET"330

Representing the concentration of the solute in those outflow fluxes. The values of "Cl mg/l -> ET" would all be zero,

since the partitioning coefficient "alpha" associated with that solute and outflow was set to zero.

3.3 Running the model and querying results

The model is setup and run by instantiating a model object provided with all the needed input data, then calling its runmethod:

1 from mesas.sas.model import Model

2 my_model = Model(data_df='/path/to/data.csv', config='/path/to/config.json')

3 my_model.run()

The timeseries inputs and outputs will then be available in a dataframe accessible as an attribute of the model object. For335

example, this will allow you to plot the input and output concentrations:

1 import matplotlib.pyplot as plt
2

3 # Extract the timeseries

4 C_in = my_model.data_df['Cl mg/l']

5 C_out = my_model.data_df['Cl mg/l --> Q']

6 t = my_model.data_df.index

7

8 # Make the plots

17

https://doi.org/10.5194/egusphere-2022-1262
Preprint. Discussion started: 12 December 2022
c© Author(s) 2022. CC BY 4.0 License.

9 plt.plot(t, C_in, label = "Cl in precip")

10 plt.plot(t, C_out, label = "Cl in discharge")

11

12 # Finishing touches

13 plt.legend(frameon=False)

14 plt.xlabel('time')

15 plt.ylabel('Cl [mg/l]')

Users can access further results using accessor functions. These can return the values for a particular time-step, age-step, or

input time. The latter is useful for examining how water that entered at a particular time evolves in time. If none of these are

given, the entire array is returned. Both density (sT, pQ, mT, mQ, mR) and cumulative (ST, PQ, MT, MQ, MR) forms are available.

1 # Make an array of ages to plot against

2 T = my_model.options['dt'] * np.arange(my_model.options['max_age'])

3

4 # Extract and plot the TTD at a particular timestep

5 pQ = my_model.get_pQ(timestep=100, flux='Q')

6 plt.figure()

7 plt.step(T, pQ, where='post')

8

9 # Extract and plot the volume of water in storage with an age less than 90

10 ST = my_model.get_ST(agestep=90)

11 plt.figure()

12 plt.step(T+1, ST, where='pre')

13

14 # Extract and plot the concentration of water in storage as it evolves due to evapoconcentration

15 sT = my_model.get_sT(inputtime=328)

16 mT = my_model.get_mT(inputtime=328, sol='Cl mg/l')

17 CT = mT/sT

18 plt.step(t, CT, where='post')

More information on these functions is available in the documentation.340

4 Code validation and comparison

To validate the numerical implementation mesas.py was tested against several analytical benchmark solutions. Six of these

are analytical solutions for different SAS functions under steady flow. Additional benchmark solutions for unsteady flow are

identical to ones presented for tran-SAS in Benettin and Bertuzzo (2018), and can therefore be used for comparison.

4.1 Validation against benchmarks: steady flow345

4.1.1 Approach

For certain SAS functions it is possible to find a closed-form expression for the corresponding TTD under steady flow. For the

six cases considered here the details of the derivations are given in Appendix A, and the mathematical results are listed in Table

18

https://doi.org/10.5194/egusphere-2022-1262
Preprint. Discussion started: 12 December 2022
c© Author(s) 2022. CC BY 4.0 License.

C
as

e
Fl

ux

Q
(t

)
=

SA
S

fu
nc

tio
n

Ω
(S
T
,t

)
=

C
on

tin
uo

us
T

T
D

p
Q

(T
,t

)
=

D
is

cr
et

e
T

T
D

p
Q
i,
j

=
1

∆
tδ
j
×

U
ni

fo
rm

Q
U

ni
fo

rm
(0
,S

0
)

Q S
0
e−

T
Q S
0

 δ
+
e−

δ
−

1
i

=
0

e−
(1

+
i)
δ
(eδ −

1
) 2

i
>

0

E
xp

on
en

tia
l

Q
G

am
m

a(
1
,S

0
)

Q S
0

(T
Q S
0

+
1
) −2

 δ
+

lo
g
(1
δ
+

1

)
i

=
0

lo
g
(

(δ
i+

1
)2

(δ
(i
−

1
)+

1
)(
δ
(i

+
1
)+

1
)

)
i
>

0

B
ia

se
d

ol
d

Q
K

um
ar

as
w

ay
(2
,1

)

or
B

et
a(

2
,1

)

on
S
T
∈

[0
,S

0
]

2
Q

ta
n
h
(T

Q S
0

)
S
0

c
o
sh

2
(T

Q S
0

)
 δ
−

ta
n
h
(δ

)
i

=
0

2
si

n
h
2
(δ

)
ta

n
h
(δ
i)

c
o
sh

((
i−

1
)δ

)
c
o
sh

((
i+

1
)δ

)
i
>

0

B
ia

se
d

yo
un

g
Q

K
um

ar
as

w
ay

(1
,2

)

or
B

et
a(

1
,2

)

on
S
T
∈

[0
,S

0
]

2
Q S
0

(T
Q S
0

+
1
) −3

 δ
2

δ
+

1
i

=
0

2
δ
2

(δ
(i
−

1
)+

1
)(
δ
i+

1
)(
δ
(i

+
1
)+

1
)

i
>

0

Pa
rt

ia
lb

yp
as

s
Q

K
um

ar
as

w
ay

(
1 2
,1

)

or
B

et
a(

1 2
,1

)

on
S
T
∈

[0
,S

0
]

−
Q

2
S
0

(W

(−e
−
Q
T

2
S
0
−

1

) −1
+

1

) −1
 δ

+
M

(1
)
−

1
i

=
0

M
(i
−

1
)
−

2
M

(i
)
+
M

(i
+

1
)

i
>

0

M
(`

)
=
W
(−e

−
δ
` 2
−

1
)(W

(−e
−
δ
` 2
−

1
) +

2
)

Pa
rt

ia
lp

is
to

n
Q

K
um

ar
as

w
ay

(1
,

1 2
)

or
B

et
a(

1
,

1 2
)

on
S
T
∈

[0
,S

0
]

Q
2
S
0

on
T
∈

[0
,2
S

0
/
Q

]

 δ
2 4

i
=

0

δ
2 2

i
>

0

U
ni

fo
rm

&
Ti

m
e-

va
ry

in
g

flu
x

Q
(t

)
U

ni
fo

rm
(0
,S

(t
))

J
(t
−
T

)
S

(t
)

ex
p
(−∫

t t−
T

Q
(τ

)
S

(τ
)
d
τ
)

 e−
δ
j
φ
j

+
δ j
−

1
i

=
0

S
j
−
i

S
j

ex
p
(−∑

i k
=

0
δ j
−
k
φ
j
−
k

)
×
(eδ jφ

j
−

1
)(e(

δ
j
−
i
+
η
j
−
i
)φ
j
−
i
−

1
)

i
>

0

Ta
bl

e
4.

A
na

ly
tic

so
lu

tio
ns

fo
r

th
e

co
nt

in
uo

us
an

d
di

sc
re

te
T

T
D

fo
r

a
nu

m
be

r
of

be
nc

hm
ar

k
SA

S
fu

nc
tio

ns
w

ith
U

ni
fo

rm
,G

am
m

a,
an

d
B

et
a

di
st

ri
bu

tio
ns

.T
he

di
sc

re
te

fo
rm

is
ob

ta
in

ed
by

av
er

ag
in

g
th

e
va

lu
e

of
p
Q

ov
er

ea
ch

ag
e

st
ep

an
d

tim
e

st
ep

.I
n

th
e

tim
e-

va
ri

ab
le

ca
se

s
it

is
as

su
m

ed
th

at
flu

xe
s

ar
e

co
ns

ta
nt

ov
er

ea
ch

tim
es

te
p,

so
S
j
+

1
=
S
j

+
∆
t(
J
j
−
Q
j
).

Fo
r

no
ta

tio
na

lc
on

ve
ni

en
ce

w
e

ha
ve

de
fin

ed
δ j

=
∆
T
Q
j
/
S
j
,κ

=
k
∆
t,
η
j

=
S
j
+

1
/
S
j
−

1
an

d
φ
j

=
lo

g
(η
j

+
1
)/
η
j

if

η
j
6=

0
,o

th
er

w
is

e
φ
j

=
1

.

19

https://doi.org/10.5194/egusphere-2022-1262
Preprint. Discussion started: 12 December 2022
c© Author(s) 2022. CC BY 4.0 License.

4. Several of these have been found previously Botter (2012); Harman (2015); Berghuijs and Kirchner (2017), though others

are new.350

The six cases (also shown in the top row of Figure 1) are a uniform distribution, an exponential distribution, a ‘biased old’

and a ‘biased young’ distribution which encode a bias for older and younger storage that varies linearly with age rank in

storage, and a ‘partial piston’ and a ‘partial bypass’ distribution (both of which encode a strong preference for the oldest and

youngest storage respectively). The latter four scenarios are special cases of both Beta and Kumaraswamy distributions.

To assess the validity of our implementation of the numerical solution against these closed-form expressions we can either355

a) use very fine timesteps and thus more closely approximate the continuous result, or b) find an analytical form of the discrete

solution. The latter is preferable, since we can compare the numerical and analytical results directly, rather than asymptotically

at the limit of small time steps. We have therefore taken the additional step of obtaining discrete versions of each expression

(rightmost column of Table 4), which when convolved with a synthetic timeseries of input concentrations yield the average

output concentration over each timestep. These exact values can be compared directly to the numerical results, which are also360

intended to represent the average value over each timestep.

In each scenario the flow rate was set to J(t) =Q(t) = 1 and the timestep to ∆t= 0.1. The value of the scale parameter

was set to S0 = 5, and an offset of Smin = 1 was used. Consequently outflow concentrations are delayed relative to inflows by

5 timesteps. Inflow concentrations were synthetically generated as independent identically distributed random values (white

noise) normally distributed with a mean of 1.0 and a standard deviation of 1.0. Initial concentration in storage (Cold) was set365

to 1.0. The n_substeps parameter was initially set to 1, then increased to 10 to examine how a greater number of numerical

substeps improved the solution accuracy.

4.1.2 Results

The second row of Figure 1 (g - l) plots the tracer concentration predicted by mesas.py (blue and orange lines as labeled in

the first row) and analytical benchmark solutions (black dash line). The random inputs are most smoothed by the ‘biased old’370

case, and retain much of the input variability in the ‘partial bypass’ case. The last two rows of Figure 1 present the percent

errors relative to the benchmark when one (m - r) or 10 (s - x) numerical steps are taken each timestep.

When n_substeps=1, the root mean square errors for most cases are on the order of 10−6 for all but the the uniform,

where they were around 10−9, and the partial bypass case, whose errors are closer to 10−3. The steeply-varying SAS function

associated with young water in the partial bypass case appears to present a serious numerical challenge.375

When n_substeps=10, the errors decrease by a factor of around 100 in the exponential and partial piston case, but the

decrease is smaller for others. Notably the error in the partial bypass case is reduced by a factor of 40, demonstrating that

increasing n_substeps can improve numerical accuracy in this difficult case (at the cost of some computational speed).

20

https://doi.org/10.5194/egusphere-2022-1262
Preprint. Discussion started: 12 December 2022
c© Author(s) 2022. CC BY 4.0 License.

0
2

4
6

S T

0.
0

0.
2

0.
4

0.
6

SAS function (ST)

a
Un

ifo
rm

Un
ifo

rm

0
2

4
6

8
10

Ti
m

e

0.
8

0.
9

1.
0

1.
1

1.
2

Tracer conc.

g

Be
nc

hm
ar

k

0
2

4
6

8
10

Ti
m

e

64202

Error

1e
9

m

0
2

4
6

8
10

Ti
m

e

0.
5

0.
0

0.
5

1.
0

1.
5

Error

1e
9

s

0
2

4
6

S T

b
Ex

po
ne

nt
ia

l
Ga

m
m

a(
1.

0)

0
2

4
6

8
10

Ti
m

e

h

Be
nc

hm
ar

k

0
2

4
6

8
10

Ti
m

e

32101
1e

6
n

0
2

4
6

8
10

Ti
m

e

32101
1e

8
t

0
2

4
6

S T

c
Bi

as
ed

 o
ld

Be
ta

(2
,1

)
Ku

m
ar

as
wa

m
y(

2,
1)

0
2

4
6

8
10

Ti
m

e

i

Be
nc

hm
ar

k

0
2

4
6

8
10

Ti
m

e

2024
1e

6
o

0
2

4
6

8
10

Ti
m

e

42024

1e
7

u

0
2

4
6

S T

d
Bi

as
ed

 y
ou

ng
Be

ta
(1

,2
)

Ku
m

ar
as

wa
m

y(
1,

2)

0
2

4
6

8
10

Ti
m

e

j

Be
nc

hm
ar

k

0
2

4
6

8
10

Ti
m

e

1.
0

0.
5

0.
0

0.
5

1e
5

p

0
2

4
6

8
10

Ti
m

e

21012

1e
6

v

0
2

4
6

S T

e
Pa

rti
al

 b
yp

as
s

Be
ta

(1
/2

,1
)

Ku
m

ar
as

wa
m

y(
1/

2,
1)

0
2

4
6

8
10

Ti
m

e

k

Be
nc

hm
ar

k

0
2

4
6

8
10

Ti
m

e

0.
01

0.
00

0.
01

0.
02q

0
2

4
6

8
10

Ti
m

e

0.
00

04

0.
00

02

0.
00

00

0.
00

02

0.
00

04w

0
2

4
6

S T

f
Pa

rti
al

 p
ist

on
Be

ta
(1

,1
/2

)
Ku

m
ar

as
wa

m
y(

1,
1/

2)

0
2

4
6

8
10

Ti
m

e

l

Be
nc

hm
ar

k

0
2

4
6

8
10

Ti
m

e

01234
1e

6
r

0
2

4
6

8
10

Ti
m

e

012345
1e

8
x

Fi
gu

re
1.

R
es

ul
ts

of
th

e
be

nc
hm

ar
k

ru
ns

un
de

r
st

ea
dy

flo
w

.(
a-

f)
T

he
SA

S
fu

nc
tio

ns
us

ed
in

ea
ch

ca
se

.I
n

ea
ch

ca
se
"
l
o
c
"

=1
an

d
"
s
c
a
l
e
"

=5
.T

he
st

ea
dy

flo
w

ra
te

w
as
Q

=
1

,a
nd

th
e

tim
es

te
p

w
as

∆
t

=
0
.1

.(
g-

l)
T

he
pr

ed
ic

tio
ns

pr
od

uc
ed

by
m
e
s
a
s
.
p
y

an
d

th
e

an
al

yt
ic

al
be

nc
hm

ar
k

so
lu

tio
ns

(b
la

ck
da

sh
ed

lin
es

).
T

he

in
flo

w
co

nc
en

tr
at

io
ns

w
er

e
G

au
ss

ia
n

ra
nd

om
va

ri
ab

le
s

w
ith

a
m

ea
n

of
1

an
d

a
st

an
da

rd
de

vi
at

io
n

of
1.

T
he

in
iti

al
co

nc
en

tr
at

io
n

in
st

or
ag

e
w

as
1.

(m
-r

)
A

bs
ol

ut
e

er
ro

r
re

la
tiv

e
to

th
e

be
nc

hm
ar

k
w

ith
"
n
_
s
u
b
s
t
e
p
s
"

=1
.(

s-
x)

E
rr

or
w

ith
"
n
_
s
u
b
s
t
e
p
s
"

=1
0.

N
ot

e
th

at
th

e
an

no
ta

tio
n

’1
e-

6’
on

an
ax

is
in

di
ca

te
s

th
at

th
e

ax
is

va
lu

es
ar

e
m

ul
tip

le
s

of
1
0
−

6
.

21

https://doi.org/10.5194/egusphere-2022-1262
Preprint. Discussion started: 12 December 2022
c© Author(s) 2022. CC BY 4.0 License.

4.2 Validation against benchmarks: unsteady flow

4.2.1 Approach380

The power of the SAS approach comes from its ability to handle time-variable inflows and outflows. The bottom row of Table

4 gives the analytical solution for the case where the SAS function is uniform but the flow rate is time-variable. The general

analytical solution was presented in Botter (2012), but the discrete form given here is novel. The discrete form is derived from

the general case by assuming that inflows and outflow are constant over a timestep, so that the storage varies linearly. Further,

the solution given is not the instantaneous pdf pQ, but rather pQ averaged over an agestep/timestep along a characteristic curve.385

It therefore gives a precise estimate of the expected value of the fraction of discharge over each timestep drawn from inputs in

previous timesteps.

This benchmark was used to validate the mesas.py code for the same dataset Benettin and Bertuzzo (2018) used to

validate the performance of tran-SAS. The dataset was downloaded from the repository cited in Benettin and Bertuzzo

(2018), and includes eight years of 12-hourly precipitation, discharge, and evapotranspiration data. Benettin and Bertuzzo390

(2018) generated input concentrations by adding noise to a seasonal sinusoidal signal. The evapotranspiration was assumed to

be drawn uniformly from the total storage in all simulations. Total storage at the end of each timestep is calculated from the

water balance assuming an initial storage Sinit. The S0 parameter used in mesas.py was calculated by averaging the total

storage at the start and end of each timestep.

4.2.2 Results395

Figure 2a shows the input solute concentration, and the output concentration predictions of mesas.py and tran-SAS for the

case where the discharge SAS function is uniform and Sinit = 1000mm. The model predictions are visually indistinguishable

from one another. Figure 2b also showcases the effect of activating some of the features of mesas.py : the ability to account

for first-order reactions (for the case where the reaction rate is 3× 10−4/hr) and fractionation (for the case where αET = 0.8,

so that evapotranspiration enriches the tracer concentration in storage).400

Closer inspection of the residuals between the model concentration predictions and the analytical benchmarks reveals differ-

ences between the performance of tran-SAS and mesas.py . Figure 3a,b show the timeseries and distribution of errors for

tran-SAS and mesas.py for the case where Sinit = 1000mm. Though the overall distribution of absolute error magnitudes

is similar, tran-SAS produces relatively large errors about 15% of the time. Overall the root mean square error (RMSE) of

mesas.py is 0.4% (of the output standard deviation), while for tran-SAS it is 1.6%.405

These differences become larger when we consider the error in the solute mass flux, as shown in Figure 3c,d. The RMSE of

mesas.py is 0.016%, while for tran-SAS it is about 15 times larger, at 0.21%.

The differences can be almost entirely attributed to the fact that tran-SAS provides estimates of the instantaneous transit

time distribution at the end of each timestep, while mesas.py estiamtes timestep-averaged values. It is also possible to obtain

the TTD for the end of the timestep from mesas.py output, and use them to estimate outflow concentrations. Those estimates410

have errors (shown in green in Figure 3d) very similar to those of tran-SAS, as we would expect.

22

https://doi.org/10.5194/egusphere-2022-1262
Preprint. Discussion started: 12 December 2022
c© Author(s) 2022. CC BY 4.0 License.

2014-01 2014-07 2015-01 2015-07 2016-01 2016-07 2017-01 2017-07

40

50

60

So
lu

te
 c

on
ce

nt
ra

tio
n

[m
g

l
1]

CJ TranSAS CQ MESAS CQ

2014-01 2014-07 2015-01 2015-07 2016-01 2016-07 2017-01 2017-07

35

40

45

50

55

60

65

So
lu

te
 c

on
ce

nt
ra

tio
n

[m
g

l
1]

MESAS variations
CJ Base ET = 0.8 k1 = 0.0003

Figure 2. mesas.py application on tran-SAS timeseries. Upper: CQ estimations from mesas.py (orange dash) and tran-SAS (blue

line) after four-year spinup period; grey line represents input concentration from precipitation (CJ) Lower: variations of mesas.py simu-

lation. Grey line: input concentration CJ from precipitation; Black line: base case, using the same setting as tran-SAS model; Blue line:

change αET = 0.8 upon base case; Organge line: add first-order reaction rate k1 = 0.0003 upon base case.

23

https://doi.org/10.5194/egusphere-2022-1262
Preprint. Discussion started: 12 December 2022
c© Author(s) 2022. CC BY 4.0 License.

2014-01 2014-07 2015-01 2015-07 2016-01 2016-07 2017-01 2017-07

0.15

0.10

0.05

0.00

0.05

0.10

0.15

No
rm

al
ize

d
nu

m
er

ica
l e

rro
r [

-]

Concentration error relative to t-averaged analytical solution
MESAS
TranSAS

10 4 10 3 10 2 10 1

|Error|

0

20

40

60

80

100

%
 sm

al
le

r

CDF of |conc. error|

mesas.py
mesas.py (inst.)
TranSAS

10 6 10 5 10 4 10 3 10 2

|Error|

0

20

40

60

80

100

%
 sm

al
le

r

CDF of |mass flux error|

mesas.py
mesas.py (inst.)
TranSAS

2014-01 2014-07 2015-01 2015-07 2016-01 2016-07 2017-01 2017-07

0.04

0.03

0.02

0.01

0.00

0.01

0.02

No
rm

al
ize

d
nu

m
er

ica
l e

rro
r [

-]

Mass flux error relative to t-averaged analytical solution
MESAS
TranSAS

0.5 1.0 1.5 2.0 2.5 3.0
k

10 3

10 2

10 1

RM
SE

(n
or

m
al

iz
ed

)

Conc. error relative to mesas.py (t-averaged) with n_substeps=10
TranSAS
MESAS

500 1000 1500 2000
Initial Storage Sinit

10 2

RM
SE

(n
or

m
al

iz
ed

)

Conc. error relative to t-averaged analytical

TranSAS
MESAS

Figure 3. Comparison of mesas.py with tran-SAS for a benchmark problem presented by Benettin and Bertuzzo (2018). a) normalized

RMSE of outflow concentration estimates from mesas.py (orange) and tran-SAS (blue) relative to the timestep-averaged analytical

solution with Sinit = 1000 and k = 1; b) Absolute concentration error cdf for mesas.py and tran-SAS; c,d) as with (a,b), but showing

errors in the mass flux, rather than the concentration; e) effect of varying k ∈ [0.2,0.3,0.5,1,1.2,1.5,2,3] with Sinit = 1000, on the differ-

ence between each code’s predictions and a run of mesas.py with 10 substeps as an high-accuracy estimate; f) with k = 1, effect of varing

Sinit ∈ [300,500,1000,2000], on the concentration estimates of tran-SAS, mesas.py relative to to the analytical solution.

mesas.py performs better than tran-SAS for other configurations of the problem, though the size of the difference

changes. The normalized root-mean-squared-error (RMSE) of each implementation are shown in Figure 3f for four different

24

https://doi.org/10.5194/egusphere-2022-1262
Preprint. Discussion started: 12 December 2022
c© Author(s) 2022. CC BY 4.0 License.

values of initial storage. The results show that normalized RMSE is larger for both codes when storage is small, however

mesas.py has a lower RMSE than tran-SAS in all cases.415

We can also compare the performance of these models for the case where the discharge SAS function is not uniform.

Again following Benettin and Bertuzzo (2018) we consider the case where ΩQ(ST , t) =
[
ST (T,t)
S(t)

]k
. This is equivalent to a

Kumaraswami distribution with Smin = 0, S0 = S(t), a= k and b= 1. The required parameter JSON file is given below:

1 "sas_specs":{

2

3 "Q":{

4 "Q SAS function":{

5 "func": "kumaraswamy",

6 "args": {

7 "loc": 0.0,

8 "scale": "S",

9 "a": "k",

10 "b": 1.0

11 }

12 }

13 },

14

15 "ET":{

16 "ET SAS function":{

17 "ST": [0.0, "S"],

18 "P": [0.0, 1.0]

19 }

20 }

21 },

22

23 "solute_parameters":{

24 "C":{

25 "C_old": 50,

26 }

27 },

28

29 "options":{

30 "influx": "J"

31 "n_substeps": 1

32 },

The timeseries dataset includes columns Q, J, ET, S, k, and input concentrations C.

Since analytical solutions are unavailable for this more general case the results obtained from tran-SAS and mesas.py420

were compared against a higher-accuracy mesas.py solution (obtained by setting n_substeps to 10). The RMSE for a

range of values of k are shown in Figure 3c. mesas.py RMSE was consistently lower than tran-SAS, though errors in both

cases were higher for small k.

25

https://doi.org/10.5194/egusphere-2022-1262
Preprint. Discussion started: 12 December 2022
c© Author(s) 2022. CC BY 4.0 License.

5 Conclusion

SAS transport theory provides a very general framework for modeling material transport through control volumes (Benettin425

et al., 2022). At its core, it is based on a statement of conservation of mass of bulk material of different ages. This must be

augmented with a SAS function that captures how outflows preferentially remove bulk material from storage according to the

rank of its age. The mesas.py code presented here implements this theory, allows SAS functions to be expressed in a very

flexible way, and solves the underlying equations with high accuracy with regard to mass balance.

The code is also intended to be user-friendly. A number of resources are available for people, including a free online course is430

available through HydroLearn. The course, entitled JHU 570.412 Tracers and transit times in time-variable hydrologic systems:

A gentle introduction to the StorAge Selection (SAS) approach can be found at https://edx.hydrolearn.org/courses/course-v1:

JHU+570.412+Sp2020/course/ (free registration required). This course includes three sections of introductory SAS function

theory accompanied by a mesas.py walk-through.

Further work is needed to augment the code with additional useful tools. Three sets of tools are particularly important. First,435

tools for generating ensembles of input concentration data. In hydrology, observations of input concentrations are often bulk

samples that represent amount-weighted averages over multiple timesteps. These must be disaggregated to the resolution at

which we want to run the model. Second, tools for parameterizing SAS functions and fitting them to data, preferably in a way

that can adapt to any specification of the SAS function. Third, tools for assessing uncertainty in both the disaggregated inputs,

the SAS function shape, and the model predictions.440

Code availability. mesas.py v1.0 is open source and distributed under the terms of the MIT License. The code is available on GitHub

here: https://github.com/charman2/mesas. Version 1.0 is tagged as v1.20221012, and is archived at https://doi.org/10.5281/zenodo.7144731.

The code is open source, and users are encouraged to use GitHub’s issue tracking framework for submitting bug reports and feature requests.

The most up-to-date version of mesas.py along with its dependencies can be installed from the command line using conda with:

The model can also be installed by building from the source code using python setup.py install. A FORTRAN compiler is445

required to do so (but is not required when installing through conda).

Documentation for mesas.py is available at https://mesas.readthedocs.io/en/latest/. This documentation is also stored in the GitHub

repository.

Data availability. No new data is presented in this paper.

Appendix A: Analytical benchmarks450

A1 Steady-state solutions

At steady state with one outflow and J =Q (2) can be written as:

26

https://doi.org/10.5194/egusphere-2022-1262
Preprint. Discussion started: 12 December 2022
c© Author(s) 2022. CC BY 4.0 License.

dsT
dT

=−QpQ(T) (A1)

sT (0) =Q (A2)

This is a separable differential equation, which we can integrate twice to give:455

ST (T) =Q

T −

T∫

0

PQ(τ) dτ

 (A3)

This gives the steady-state cumulative age-ranked storage in terms of the cumulative transit time distribution PQ.

Alternatively we can use the fact that pQ = ωQsT and sT = dST /dT to write the conservation law as:

dST
dT

=Q−QΩQ(ST (T)) (A4)

ST (0) = 0 (A5)460

Which can likewise be integrated to obtain the age of water at a given location in age-ranked storage in terms of the SAS

function:

T =
1
Q

ST (T)∫

0

1
1−ΩQ(σ)

dσ (A6)

Using these equations we can (in principle) find the steady-state transit time distributions if we know the SAS function, and

vice versa. In many cases a closed form solution is not possible.465

For example, for a uniform distribution U(0,S0) SAS function ΩQ(ST) = ST /S0 for ST ∈ [0,S0]. Substituting this into

(A6) gives QT =−S0 log(1−ST /S0), and rearranging gives ST (T) = S0

(
1− e

Q
S0
T
)

. This is the cumulative age-rank stor-

age when ΩQ is a uniform distribution and the flow is steady. Substituting this into the definition of the uniform ΩQ, yields the

cumulative transit time distribution (since PQ(T,t) = ΩQ(ST , t) by definition). Consequently, we can say that at steady state:

ΩQ(ST) = U(0,S0) ⇔ PQ(T) = 1− e−
Q
S0
T (A7)470

That is, a uniform SAS function is equivalent to an exponential transit time distribution.

A similar set of steps can be used to show that an exponential SAS function (which is a special case of a Gamma distribution

with shape parameter α= 1) is equivalent to TTD following a Lomax distribution with exponent 1:

ΩQ (ST) = Γ(1,S0) ⇔ PQ(T) = 1− (1 +QT/S0)−1 (A8)

27

https://doi.org/10.5194/egusphere-2022-1262
Preprint. Discussion started: 12 December 2022
c© Author(s) 2022. CC BY 4.0 License.

We were not able to obtain a solution for the general case of a Gamma distribution. Similarly, solutions for the TTD when475

the SAS function is given by a Beta distribution B(α,β) over 0≤ ST /S0 ≤ 1 could only be found for particular values of

(α,β). For example, with α= 1 and β = 2 we have the "biased young" case:

ΩQ(ST) =B(1,2) ⇔ PQ(T) = 1− (1 +TQ/S0)−2 (A9)

Which is a Lomax distribution with exponent 2. Similarly the "biased old", "partial bypass", and "partial piston" cases are:

ΩQ(ST) =B(2,1) ⇔ PQ(T) = tanh2 (TQ/S0) (A10)480

ΩQ(ST) =B(1
2 ,1) ⇔ PQ(T) =W

(
−e−

QT
2S0
−1
)

+ 1 (A11)

ΩQ(ST) =B(1,β) ⇔ PQ(T) = 1− ((β− 1)QT/S0 + 1)
β

1−β (A12)

where W (·) is the Lambert-W function.

A2 Accounting for discretization effects

To obtain a discrete form of the analytical solution we can make two assumptions. First, that the timeseries of inflow concen-485

trations, and of water inflows and outflows are in fact constant within a timestep ∆t, so

CJj = CJ(t) for j ≤ t/∆t < j+ 1 (A13)

Jj = J(t) for j ≤ t/∆t < j+ 1 (A14)

Qj = Q(t) for j ≤ t/∆t < j+ 1 (A15)

(A16)490

where CJj and CQj are the discrete forms of CJ(t) and CQ(t).

Second, we assume the numerical estimates of the outflow concentration timeseries should reflect the average value of the

analytical solution over each timestep. That is:

CQj =
1

∆t

∆t∫

0

CQ(j∆t+ ν) dν (A17)

In the continuous form, CQ is obtained by the convolution of pQ with CJ , as shown in equation (1). If we assume that495

the input concentrations are constant over each timestep then (1) can be expressed as the sum of integrals over each timestep

28

https://doi.org/10.5194/egusphere-2022-1262
Preprint. Discussion started: 12 December 2022
c© Author(s) 2022. CC BY 4.0 License.

interval j∆t≤ t < (j+ 1)∆t, plus the ‘old water’ contribution:

CQ(t) =

t∫

0

CJ(t−T)pQ(T,t) dT +ColdPQ(t, t)

=

j−1∑

i=0

t−(j−i−1)∆t∫

t−(j−i))∆t

CJ(t−T)pQ(T,t) dT

+

t−j∆t∫

0

CJ(t−T)pQ(T,t) dT +ColdPQ(t, t)

=

j−1∑

i=0

CJj−i−1

t−(j−i−1)∆t∫

t−(j−i))∆t

pQ(T,t) dT

+ CJj

t−j∆t∫

0

pQ(T,t) dT +ColdPQ(t, t)

=

(
j−1∑

i=0

CJj−i−1 (PQ(t− (j− i− 1)∆t, t)−PQ(t− (j− i)∆t, t))
)

+ CJjPQ(t− j∆t, t) +ColdPQ(t, t)

(A18)

To obtain the discrete outflow concentrations we must apply the timestep-averaging in (A17) to (A18), which yields the

discrete convolution:500

CQj =
j∑

i=0

CJj−ipQi,j∆t+ColdPQj,j (A19)

where the timestep-averaged TTD PQi,j is given by:

PQi,j =
1

∆t

∆t∫

0

PQ(i∆t+ ν,j∆t+ ν) dν (A20)

and pQi,j is obtained via the discrete derivative:

pQi,j =

PQi,j
∆t

i= 0

PQi,j − PQi−1,j

∆t
i > 0

(A21)505

For the elementary case of steady flow and uniform sampling this gives:

pQi,j =
1

∆tδ
×

δ+ e−δ − 1 i= 0

e−(1+i)δ
(
eδ − 1

)2
i≥ 1

(A22)

where δ = ∆tQ/S0. Other forms are given in Table 4. Note that in the Exponential an Biased Young cases δ must be less than

1.

Author contributions. CJH contributed to the conceptualization, methodology, formal analysis, investigation, software development, valida-510

tion/evaluation, visualization, original draft preparation, funding acquisition, project administration, and supervision. EXF contributed to the

software development, validation/evaluation, visualization, original draft preparation, review editing

29

https://doi.org/10.5194/egusphere-2022-1262
Preprint. Discussion started: 12 December 2022
c© Author(s) 2022. CC BY 4.0 License.

Competing interests. The contact author has declared that none of the authors has any competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains neutral with regard to jurisdictional claims in published maps and institutional

affiliations.515

Acknowledgements. Thanks to Oliver Evans and Fei Lu for their contributions to the mesas.py code. This work was supported by a U.S.

National Science Foundation grant (EAR-1654194)

30

https://doi.org/10.5194/egusphere-2022-1262
Preprint. Discussion started: 12 December 2022
c© Author(s) 2022. CC BY 4.0 License.

References

Benettin, P. and Bertuzzo, E.: Tran-SAS v1.0: A numerical model to compute catchment-scale hydrologic transport using StorAge Selection

functions, Geoscientific Model Development, 11, 1627–1639, https://doi.org/10.5194/gmd-11-1627-2018, 2018.520

Benettin, P., Rodriguez, N. B., Sprenger, M., Kim, M., Klaus, J., Harman, C. J., van der Velde, Y., Hrachowitz, M., Botter, G., McGuire, K. J.,

Kirchner, J. W., Rinaldo, A., and McDonnell, J. J.: Transit Time Estimation in Catchments: Recent Developments and Future Directions,

58, e2022WR033 096, https://doi.org/10.1029/2022WR033096, 2022.

Berghuijs, W. R. and Kirchner, J. W.: The Relationship between Contrasting Ages of Groundwater and Streamflow, 44, 8925–8935,

https://doi.org/10.1002/2017GL074962, 2017.525

Botter, G.: Catchment mixing processes and travel time distributions, Water Resources Research, 48,

https://doi.org/10.1029/2011WR011160, 2012.

Danesh-Yazdi, M., Klaus, J., Condon, L. E., and Maxwell, R. M.: Bridging the gap between numerical solutions of travel time distributions

and analytical storage selection functions, Hydrological Processes, 32, 1063–1076, https://doi.org/10.1002/hyp.11481, 2018.

Dupas, R., Ehrhardt, S., Musolff, A., Fovet, O., and Durand, P.: Long-term nitrogen retention and transit time distribution in agricultural530

catchments in western France, Environmental Research Letters, 15, https://doi.org/10.1088/1748-9326/abbe47, 2020.

Harman, C. J.: Time-variable transit time distributions and transport: Theory and application to storage-dependent transport of chloride in a

watershed, Water Resources Research, 51, 1–30, https://doi.org/10.1002/2014WR015707, 2015.

Harman, C. J.: Tracers and transit times in time-variable hydrologic systems: A gentle introduction to the StorAge Selection (SAS) approach,

https://apps.edx.hydrolearn.org/learning/course/course-v1:JHU+570.412+Sp2020/home, 2020.535

Rinaldo, A., Benettin, P., Harman, C. J., Hrachowitz, M., McGuire, K. J., Velde, Y. V. D., Bertuzzo, E., and Botter, G.: Storage selection func-

tions: A coherent framework for quantifying how catchments store and release water and solutes, https://doi.org/10.1002/2015WR017273,

2015.

Rodriguez, N. B. and Klaus, J.: Catchment Travel Times From Composite StorAge Selection Functions Representing the Superposition of

Streamflow Generation Processes, Water Resources Research, 55, 9292–9314, https://doi.org/10.1029/2019WR024973, 2019.540

Rodriguez, N. B., Pfister, L., Zehe, E., and Klaus, J.: A comparison of catchment travel times and storage deduced from deuterium and tritium

tracers using StorAge Selection functions, Hydrology and Earth System Sciences, 25, 401–428, https://doi.org/10.5194/hess-25-401-2021,

2021.

Ross, J., Schreiber, I., and Vlad, M. O.: Lifetime and transit time distributions and response experiments in chemical kinetics, in: Determi-

nation of Complex Reaction Mechanisms, Oxford University Press, 2006.545

Rossum, J. M. V., Bie, J. E. G. M. D., Lingen, G. V., and Teeuwen, H. W. A.: Pharmacokinetics from a Dynamical Systems Point of View,

Journal of Pharmacokinetics and Biopharmaeeutics, 17, 1989.

Stockinger, M. P., Bogena, H. R., Lücke, A., Diekkrüger, B., Cornelissen, T., and Vereecken, H.: Tracer sampling frequency

influences estimates of young water fraction and streamwater transit time distribution, Journal of Hydrology, 541, 952–964,

https://doi.org/10.1016/j.jhydrol.2016.08.007, 2016.550

Tyworth, J. E. and Zeng, A. Z.: Estimating the effects of carrier transit-time performance on logistics cost and service, Transportation

Research Part A: Policy and Practice, 32, 89–97, 1998.

31

https://doi.org/10.5194/egusphere-2022-1262
Preprint. Discussion started: 12 December 2022
c© Author(s) 2022. CC BY 4.0 License.

Wilusz, D. C., Harman, C. J., Ball, W. B., Maxwell, R. M., and Buda, A. R.: Using Particle Tracking to Understand Flow Paths, Age Distribu-

tions, and the Paradoxical Origins of the Inverse Storage Effect in an Experimental Catchment, https://doi.org/10.1029/2019WR025140,

2020.555

32

https://doi.org/10.5194/egusphere-2022-1262
Preprint. Discussion started: 12 December 2022
c© Author(s) 2022. CC BY 4.0 License.

